Bonus Lecture 1

Using Libraries and
Distributing Your Software

Anton Gerdelan <gerdela@scss.tcd.ie>

mailto:gerdela@scss.tcd.ie

Installing Libraries

e sudo apt-get install ..., Synaptic
e brew 1nstall ...
e download pre-compiled binaries from website
e must match your
o compiler (C++) or version of Visual Studio
e 32-bit or 64-bit build
e release or debug build

e download the source code and build them yourself

Compiling Libraries

* |f the library is a single .h -> no need!
 Read the instructions - does the library use
 make - we know this one!
e automake - slightly more complex - checks tfor dependencies
e cmake - download cmake
 gtmake - probably not a good sign

e something else...

What Builds?

e Linux
* .S0O - "shared object" - dynamic library
e .a-"archive' - static library
* Mac
e .dylib - dynamic library
e .a - static library
« framework - a package containing headers and libraries
* Windows
e dll - "dynamically linked library'- dynamic library
e lib - usually a stub that goes with the .dll, may also be a static library

e .a-some compilers (not Visual Studio) - static library

Static Libraries

static libraries work like compiled .c source

* gcc -0 demo maln.c somelibrary.a

usually depend on other libraries

gcc -0 demo main.c somelibrary.a -lotherlibrary

read the instructions to find out - or guess from linker
complaints

compiles Iinto your binary program - easier to distribute

Dynamic Lioraries

newer. a pain. '‘advantages”: re-use and upgrade

add path to library file (-L with gcc) if not on system path
add file to link (-1 with gcc)

o if file is called libopengl32.so then just -lopengl32

* gcc -0 demo main.c -Lmy libs folder -lmylib
does not get compiled into binary program

has to stay on system path

e Or as a loose file that you include with your program*

Headers

* Libraries usually also ship with headers (.h or .hpp)

e |Sthere an include/ folder in the download?

e Copy this into your project (unless it's installed on
system path)

e Tell compiler where to find this folder too

e with gcc with is -l (capital i)

+ gcc -o myprogram main.c =-Iincludes/ -Llibs/ -lmylib.so

How to Distribute with
Dynamic Libraries

 Find all the dependencies, then:
1. if it looks like a system library - safely ignore
2. tell users to install first (depends on licences/project) or
3. provide redistributable (e.g. DirectX 2008 redist) or

4. make it an automatically installed dependency (Linux)

—— 5. compile it in as a static library or

6. remove it from your project and write your own or

/. if all else fails - include the dynamic library in your bundle

How to Query
Dependencies

e Linux: use 1dd my program
e then Idd on each dependency within

« Mac: use otool -L my program

 Windows: download Dependency Walker

e tree view of dependencies

gerdelanimac:storm_my_castle anton$ otool -L castle

castle:
/System/Library/Frameworks/Cocoa.framework/Versions/A/Cocoa (compatibility version 1.0.0, current version 22.0.0)
/System/Library/Frameworks/OpenGL. framework/Versions/A/OpenGL (compatibility version 1.0.0, current version 1.0.0)
/System/Library/Frameworks/I0Kit.framework/Versions/A/IOKit (compatibility version 1.0.0, current version 275.0.0)
/System/Library/Frameworks/CoreVideo. framework/Versions/A/CoreVideo (compatibility version 1.2.0, current version 1.5.0)
/usr/1lib/1libSystem.B.dylib (compatibility version 1.0.0, current version 1238.0.0)
/System/Library/Frameworks/AppKit. framework/Versions/C/AppKit (compatibility version 45.0.0, current version 1500.0.0)
/System/Library/Frameworks/CoreFoundation. framework/Versions/A/CoreFoundation (compatibility version 150.0.0, current version 1348.0.0)
/System/Library/Frameworks/CoreGraphics.framework/Versions/A/CoreGraphics (compatibility version 64.0.0, current version 1070.0.0)
/System/Library/Frameworks/CoreServices.framework/Versions/A/CoreServices (compatibility version 1.0.0, current version 775.7.0)
/System/Library/Frameworks/Foundation. framework/Versions/C/Foundation (compatibility version 300.0.0, current version 1349.0.0)
/usr/lib/libobjc.A.dylib (compatibility version 1.0.0, current version 228.0.0)

gerdelanimac:storm_my_castle anton$ ||

[think these are all OS X system libraries

How to Distribute with
Dynamic Libraries

Windows - put the .dll files into your program's folder
o other OSs don't allow this - security vulnerability
Linux
e enter into console before compiling:
- export LD RUN PATH=my libs folder/
Mac
e ~putinto a .app bundle folder structure
e use install_name_tool on libraries and program binary

| make scripts to do all of this ugly stuft

o~NOOULTSA WN K

#!/bin/bash

this script builds the 0S X .apps from scratch which means old files aren't
kept in the .app
Anton Gerdelan, Hangover 8 Aug 2015

function to build either app in the same way

function bld_app {

}

echo building $APP

first delete old one
echo deleting old app....
rm -rf $APP

create the .app folder structure
echo create app folder structure...
mkdir -p $APP/Contents/Frameworks/
mkdir -p $APP/Contents/Mac0S/
mkdir —-p $APP/Contents/Resources/
icon

cp $BITS_DIR/icon.icns $APP/Contents/Resources/

dynamic libraries

cp lib/osx_x64/1libirrklang.dylib $APP/Contents/Frameworks/
game data (will be a .zip eventually)

for i in audio characters editor fonts lang maps meshes particles props save shaders_2_1 shaders_3_2 textures;

do cp -Rvf $i $APP/Contents/Resources/;

done
app meta-data and executable

cp $BITS_DIR/Info.plist $APP/Contents/

cp $BITS_DIR/PkgInfo $APP/Contents/

cp $BITS_DIR/Icon $APP/ #i#i### removed after real icon added

#cp dev/tools/map_dat/maps.dat $APP/Contents/Resources/
cp $BINSRC $APP/Contents/Mac0S/$BINDST

dynamic library path for binary

install_name_tool -change @executable_path/1lib/osx_x64/libirrklang.dylib @executable_path/../Frameworks/libirrklang.dylib $APP/Contents/Mac0S/$BINDST
install_name_tool -id @executable_path/../Frameworks/libirrklang.dylib $APP/Contents/Frameworks/libirrklang.dylib

ST Ip SymboUts [rom vinary
strip —u -r $APP/Contents/Mac0S/$BINDST
cp $BITS_DIR/launcher.sh $APP/Contents/Mac0S/

build the main app first
APP=mac_app/Crongdor.app
BITS_DIR=mac_app/crongdor_app_bits
BINSRC=crongdor_osx64
BINDST=crongdor_osx64

bld_app

build the editor next
#APP=mac_app/Editor.app
#BITS_DIR=mac_app/editor_app_bits
#BINSRC=editor_osx64
#BINDST=editor_osx64

#bld_app

add editor stuff folder
#cp -R editor $APP/Contents/Mac0S/

force program to find libirrklang.dylib
(audio library) in a local folder in the
app bundle

BaSh script to build the OS X version of Crongdor

Can | Make Libraries?

single-header style, or
have
« a C file(s) with functions
e don't have amain ()

* header file as interface (declarations of the functions)

gcc —o anton.o —-c anton.c
* might need the -fPIC flag above for shared library

tell the compiler to output library instead

ar rcs libanton.a anton.o

* use the archiver to build a static library

gcc -shared -o libanton.so anton.o

Example

* | downloaded the GLFW and GLEW OpenGL helper libraries
* binaries available for some compilers
« otherwise require CMake to build from source code
 Download CMake and run it on the project
e« command line tool is a bit clunky
e use cmake-gui on folder containing cmake files
* This builds a Makefile or VS project file
e then make that

e then find in the output libraries and also grab the headers folder

