
Bonus Lecture 1  
 

Using Libraries and  
Distributing Your Software
Anton Gerdelan <gerdela@scss.tcd.ie>

mailto:gerdela@scss.tcd.ie


Installing Libraries
• sudo apt-get install … , Synaptic 

• brew install … 

• download pre-compiled binaries from website 

• must match your 

• compiler (C++) or version of Visual Studio 

• 32-bit or 64-bit build 

• release or debug build 

• download the source code and build them yourself



Compiling Libraries
• If the library is a single .h -> no need! 

• Read the instructions - does the library use 

• make - we know this one! 

• automake - slightly more complex - checks for dependencies 

• cmake - download cmake 

• qtmake - probably not a good sign 

• something else…



What Builds?
• Linux 

• .so - "shared object" - dynamic library

• .a - "archive" - static library

• Mac 

• .dylib - dynamic library

• .a - static library 

• .framework - a package containing headers and libraries 

• Windows 

• .dll - "dynamically linked library"- dynamic library 

• .lib - usually a stub that goes with the .dll, may also be a static library 

• .a - some compilers (not Visual Studio) - static library



Static Libraries
• static libraries work like compiled .c source 

• gcc -o demo main.c somelibrary.a 

• usually depend on other libraries 

• gcc -o demo main.c somelibrary.a -lotherlibrary 

• read the instructions to find out - or guess from linker 
complaints 

• compiles into your binary program - easier to distribute



Dynamic Libraries
• newer. a pain. "advantages": re-use and upgrade 

• add path to library file (-L with gcc) if not on system path 

• add file to link (-l with gcc) 

• if file is called libopengl32.so then just -lopengl32

• gcc -o demo main.c -Lmy_libs_folder -lmylib 

• does not get compiled into binary program 

• has to stay on system path 

• or as a loose file that you include with your program*



Headers
• Libraries usually also ship with headers (.h or .hpp) 

• is there an include/ folder in the download? 

• Copy this into your project (unless it's installed on 
system path) 

• Tell compiler where to find this folder too 

• with gcc with is -I (capital i) 

• gcc -o myprogram main.c -Iincludes/ -Llibs/ -lmylib.so



How to Distribute with 
Dynamic Libraries

• Find all the dependencies, then: 

1. if it looks like a system library - safely ignore 

2. tell users to install first (depends on licences/project) or 

3. provide redistributable (e.g. DirectX 2008 redist) or 

4. make it an automatically installed dependency (Linux) 

5. compile it in as a static library or 

6. remove it from your project and write your own or 

7. if all else fails - include the dynamic library in your bundle



How to Query 
Dependencies

• Linux: use ldd my_program

• then ldd on each dependency within 

• Mac: use otool -L my_program 

• Windows: download Dependency Walker

• tree view of dependencies

I think these are all OS X system libraries



How to Distribute with 
Dynamic Libraries

• Windows - put the .dll files into your program's folder 

• other OSs don't allow this - security vulnerability 

• Linux 

• enter into console before compiling: 

• export LD_RUN_PATH=my_libs_folder/ 

• Mac 

• ~put into a .app bundle folder structure 

• use install_name_tool on libraries and program binary 

• I make scripts to do all of this ugly stuff



BaSh script to build the OS X version of Crongdor

force program to find libirrklang.dylib 
(audio library) in a local folder in the 
app bundle



Can I Make Libraries?
• single-header style, or 

• have 

• a C file(s) with functions 

• don't have a main() 

• header file as interface (declarations of the functions) 

• gcc -o anton.o -c anton.c 

• might need the -fPIC flag above for shared library 

• tell the compiler to output library instead 

• ar rcs libanton.a anton.o 

• use the archiver to build a static library 

• gcc -shared -o libanton.so anton.o



Example
• I downloaded the GLFW and GLEW OpenGL helper libraries 

• binaries available for some compilers 

• otherwise require CMake to build from source code 

• Download CMake and run it on the project 

• command line tool is a bit clunky 

• use cmake-gui on folder containing cmake files 

• This builds a Makefile or VS project file 

• then make that 

• then find in the output libraries and also grab the headers folder


